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Is the Two-Dimensional One-Component Plasma
Exactly Solvable?
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The model under consideration is the two-dimensional (2D) one-component
plasma of point-like charged particles in a uniform neutralizing background,
interacting through the logarithmic Coulomb interaction. Classical equilibrium
statistical mechanics is studied by non-traditional means. The question of the
potential integrability (exact solvability) of the plasma is investigated, first at
arbitrary coupling constant I" via an equivalent 2D Euclidean-field theory, and
then at the specific values of I'=2xinteger via an equivalent 1D fermionic
model. The answer to the question in the title is that there is strong evidence
for the model being not exactly solvable at arbitrary I" but becoming exactly
solvable at ' =2xinteger. As a by-product of the developed formalism, the
gauge invariance of the plasma is proven at the free-fermion point I' =2; the
related mathematical peculiarity is the exact inversion of a class of infinite-
dimensional matrices.

KEY WORDS: Coulomb systems; one-component plasma; logarithmic interac-
tion; field representation; gauge invariance.

1. INTRODUCTION

In this paper, we consider a classical (i.e. non-quantum) model which
belongs to the general class of two-dimensional (2D) Coulomb systems
of charged particles. According to the laws of 2D electrostatics, the parti-
cles can be thought of as infinitely long charged lines which are perpen-
dicular to the confining surface. Thus, the electrostatic potential v at a
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point r, induced by a unit charge at the origin, is given by the 2D Poisson
equation

Av(r)= —27é(r) (1.1)

In a plane, the solution of this equation, subject to the boundary condi-
tion Vu(r) — 0 as |r|] — oo, reads

v(r)=—In (M) (1.2)
ro

where the free length constant rg, which fixes the zero point of the poten-
tial, will be set for simplicity to unity. In the Fourier space, the Coulomb
potential (1.2) exhibits the characteristic small-k behavior (k) =1/|k|>.
This maintains many generic properties (like screening and the related
sum rules()) of “real” 3D Coulomb fluids with the interaction potential
v(r)=1/|r|, re R. The pair interaction energy of particles with charges ¢
and ¢’, localized at the respective positions r and r’, is

v(r.q:v', ¢) =qq"v(r—r')) (1.3)

A given continuous Coulomb system is classified via the number M of
different mobile (point-like) species o =1,2,..., M, with the correspond-
ing charges g, and particle densities n,, embedded in a fixed uniform
background of charge density p,. The most studied versions are the one-
component plasma (OCP), or jellium, and the symmetric two-component
plasma (TCP), sometimes called the Coulomb gas. In the OCP there is
only one mobile species, M =1, with qi=¢ and n;=n, and neutraliz-
ing background of charge density pp. It is useful to introduce the back-
ground “number density” n; such that p, = —gny; the neutrality condition
is then equivalent to n=nj,. The symmetric TCP corresponds to M =2,
namely g1 =¢ and ny=n/2, gp= —q and ny=n/2 (n stands for the total
particle density), with no background charge p, =0. Due to the logarith-
mic nature of the interaction, the equilibrium statistical mechanics of the
underlying 2D Coulomb systems at the inverse temperature 8 =1/(kgT)
depends exclusively on the dimensionless coupling constant I' = 8¢?; the
particle density n only scales appropriately the distance. Both the OCP
and TCP are solvable in the high-temperature Debye-Hiickel limit I' — 0
(in the bulk® as well as for finite systems®#) and at the free-fermion
point I' =2 (see reviews®:®). Through a simple scaling argument, the den-
sity derivatives of the Helmholtz free energy can all be calculated exactly
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at arbitrary I". For instance, the exact equation of state for the pressure P,
BP=n(1 —T/4), has been known for a long time!”. On the other hand,
the temperature derivatives of the free energy, such as the internal energy
or the specific heat, are highly nontrivial quantities which were obtained
only in the stability region I' <2 of the 2D TCP by exploring the equiva-
lent sine-Gordon model (for a short review, see ref. (8)).

The 2D OCP, which will be of interest in this paper, is formally
related to the eigenvalue distribution of certain complex random matri-
ces® and to the modulus squared of Laughlin’s wave functions in the
fractional quantum Hall effect(%-1D There are indications from numerical
simulations that, around I" ~ 142, the fluid system undergoes a phase tran-
sition to a 2D Wigner crystal.(!?) The existence of this transition has been
put in doubt in a more recent paper.!> As was already mentioned, by
mapping onto free fermions the model is exactly solvable at the coupling
=2, in the bulk!¥ as well as in some inhomogeneous situations®:®.
The other exact information comes from the sum rules for truncated par-
ticle correlations valid at arbitrary ' of the fluid regime. The usual zeroth-
and second-moment conditions,!) having analogues in any dimension, are
supplemented by the fourth-moment (compressibility) sum rule,!> avail-
able explicitly due to the knowledge of the exact equation of state, and
the sixth-moment condition,!9 related to universal finite-size properties
of the Coulomb system.!'7-19) At couplings '=2y (y a positive integer),
the partition function of the 2D OCP confined to some special domains
can, for y =1,2 and 3, be calculated exactly up to a relatively large finite
number of particles N. For y being an odd integer, the methods based
on the expansion of even powers of the Vandermonde determinant into
Schur functions %21 turn out to be especially efficient. For y being an
even integer, representations based on the permutation group®*23 are use-
ful. At arbitrary integer y, the 2D OCP is mappable onto a discrete 1D
fermionic field theory.®¥ Within this fermionic representation, a symmetry
of the model with respect to a complex transformation of particle coor-
dinates has been shown to imply a functional relation for the two-body
density. The functional relation is equivalent to an infinite sequence of
sum rules relating the coefficients of the short-distance expansion of the
two-body density. The generalization of the symmetry to multi-particle
densities, possessing a specific invariant structure, was presented in ref. 25.

The mathematical formulation of the 2D OCP looks at first sight
simpler than the one of the 2D TCP. The mentioned integrability of the
Coulomb gas therefore evokes the potential possibility of the integrability
of the 2D OCP, and this is the main subject of the present paper. The
integrability of the 2D jellium is investigated first at arbitrary coupling
I' via an equivalent 2D Euclidean-field theory, and then at special values
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' =2xinteger via the equivalent 1D fermionic model introduced in ref. 24.
As a by-product of the developed formalism, the gauge invariance of the
2D OCP is proven at the free-fermion point I' =2.

The paper is organized as follows.

Section 2 is devoted to the 2D Euclidean-field representation of the
2D OCP. In Subsection 2.1., we sketch briefly the phenomenological De-
bye-Hiickel calculation of the free energy in order to have a test formula
for functional methods. The 2D OCP is mapped onto a 2D Euclidean-field
theory in Subsection 2.2. In Subsection 2.3., the “classical” integrability of
the Euclidean-field representation of the 2D OCP is investigated by using
a scheme proposed by Ghoshal and Zamolodchikov.(?®)

Section 3 is devoted to a further development of the discrete 1D ferm-
ionic representation of the 2D OCP at couplings I' =2xinteger.?* At these
couplings, the partition function of the plasma is shown to admit a repre-
sentation in terms of a linear set of equations.

Section 4 deals with gauge invariance of the bulk 2D OCP at cou-
pling I'=2 which has been proven previously by more standard meth-
ods in ref. 27. The alternative proof of gauge invariance presented here
is related to the exact inversion of a class of infinite-dimensional matrices,
which is of mathematical interest.

A brief recapitulation is given in Section 5.

2. 2D FIELD REPRESENTATION
2.1. Debye-Hiickel Calculation

In the mean-field approximation, the effective electric potential v at
distance r of charge ¢, placed at the origin 0 and surrounded by mobile
g-charges plus the neutralizing background, is given by the 2D Poisson
equation

AY(r) = —27q {8(r)+n [e—ﬂ‘f‘/f“) _ 1]] .1)

The mean-field Boltzmann factor can be linearized for high temperatures.
Eq. (2.1) then transforms to

(A — K2) W (r) = —21q8(r) 2.2)

where « is the inverse Debye length defined by x2=27Tn. The solution
of (2.2) reads ¥ (r) =¢K(kr), where Ky is a modified Bessel function. The
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excess (i.e., over ideal) free energy per particle, fex, is expressible in terms
of the excess potential energy per particle

Uex(B) = % lim [/ (r) +qn7] (2.3)

as follows

B
B = /0 B uex(B) (2.4)

Using the short-distance expansion of Kg,2%

Ko(x)= —1In(x/2) — C+ O(x*Inx) (2.5)

C is the Euler’s constant, we arrive at the expression

2

r r
ﬂfex'\’_zln <Z)+Z(1—2C) (2.6)

valid in the small coupling limit I' — 0.%% In what follows, this will be a
test formula for functional methods.

An analogous procedure can be applied to the I' — 0 limit of the 2D
TCP of +¢ charged particles. The excess free energy per particle is again
obtained in the form (2.6).

2.2. Field-Theoretical Representation

The 2D Coulomb potential (1.2) is singular at r=0. This causes
mathematical difficulties when representing interacting Coulomb systems
as equivalent field theories. To avoid this problem, we will consider the
Coulomb potential regularized smoothly at short distances:

Vreg(r) = —1nr—Ko(f), €>0 2.7)
€
In 3D, the analogous regularization has been used in ref. 30. Since the
Bessel function Ky(x) decays to zero exponentially as x — 00, veg(r) has
the large-r asymptotic of the pure Coulomb potential. On the other hand,
using the short-distance expansion (2.5) in (2.7), the self-energy is finite

1
Ureg(0)=C —In2 — Elnez (2.8)
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It is easy to verify that the regularized Coulomb potential satisfies the
differential equation

(A _ ezAZ) Vreg (1) = — 278(r) (2.9)

which is the counterpart of the 2D Poisson equation (1.1).

We are interested in the bulk thermodynamic properties of the OCP,
defined in the infinite region A =R? with the volume |A| — co. For N
mobile particles at positions {r j}Nzl in A, we introduce the microscopic

density of particles n and of the total charge o as follows

N N
A=Y s—r)., pIO=q) 8x—r)—qn (2.10)

j=1 j=1

Here, —gny is the fixed (i.e., N-independent) charge density of the back-
ground. The total interaction energy of the particle-background system is
expressible as

| o
En(irh=3 fA &r fA &r Pt = AT ~ 3 Ng v ©) .11

We will work in the grand canonical ensemble with the fixed back-
ground®!-32) and position-dependent fugacity z(r) of particles. The grand

partition function E at inverse temperature 8 is defined as the sum over
all N-particle states

1]

o] N
[z]= Z %/ ]’[ [dzrjz(rj)] e PENIH (2.12)
N=0"" j

j=1

The multi-particle densities can be obtained as the functional derivatives
of the generator E with respect to z(r); after the functional derivatives are
done, the homogeneous regime with the uniform fugacity z(r) =z is con-

sidered. At the one-particle level, the particle density is given by

n = (a(r))

(1‘)1 e

)=
E 8z(r) uniform

(2.13)
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At the two-particle level, one introduces the two-body density

na(r,r') = (@A) —nd(r—r)
1 s82E
= z(r)z(r)g—(SZ D5 oo (2.14)

The grand partition function (2.12) can be expressed in terms of a
2D Euclidean-field theory. We start by the standard procedure (see, e.g.,
ref. 33) and substitute the representation (2.11) of Ey in the Boltzmann
factor exp(—BEy). The self-energy term renormalizes the fugacity, z(r) —
Z(r) =z(r) exp[T'vreg (0)/2]. According to relation (2.9), —(A —€2A%)/(27)
is the inverse operator of vre;. The bilinear term in exp(—BEy) can thus
be linearized by applying the Hubbard-Stratonovich transformation

exXp |:—§/dzr/dzr’ﬁ(r)vregﬂr—r’|),5(r’):|
[ D exp ifd2r [%(])(A —62A2)¢+iw/2n,3¢,6]}
a [ D exp [fdzr%q’)(A —e2A2)¢]

(2.15)

Here, ¢(r) is a real scalar field with all derivatives vanishing at infinity and
/D¢ denotes the functional integration over this field. The terms ¢A¢
and ¢A%p can be turned into —|V¢|> and (A¢p)?, respectively, after per-
forming integrations by parts with vanishing contributions from infinity.
Inserting p from (2.10), particle coordinates in (2.12) become decoupled
from each other and one can sum over N, with the result

E= %exp{—/dzr B|v¢|2+%e2m¢)2—2(r)eiv2’ff¢

+i«/27r1"nb¢]} (2.16)
where
D= /D¢exp{—/d2r B|V¢|2+%€2(A¢)2“ (2.17)

is the normalization constant. In the homogeneous regime 7(r) =7, the
uniform shift in ¢

ln(Z/nb)
—_— 2.18
¢@)—>¢(r)+ e (2.18)
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factorizes out the z-dependence of E,
Z D 1
g = exp||AlIn( = ) +|Alnp /—¢exp —/dzr SIVoPP+
np D 2
1 .
562(A¢)2+nb<—ew2”r¢+1+i\/2nF¢):|} (2.19)

The particle density n is yielded by the homogeneous analogue of Eq.
(2.13) as follows

0 (InE
— — 2.20
" Zaz(w) " (2.20)

This means that from the grand partition sum (2.12) only the term with
the strict system neutrality survives, in the spirit of ref. 31. The density-
fugacity relationship is trivial, namely the density does not depend on the
fugacity. This enables us to pass to the canonical ensemble via the Legen-
dre transformation

—BF(n)=InE—Nlnz (2.21)

where F is the Helmholtz free energy and N =n|A|. The excess free
energy, related to F as follows —8Fe= —BF + Nlnn — N, then reads

NT 1
_ﬁFeX(n)ZT<C—1n2—§1n€2>+1nL (222)

where we have substituted the explicit form of the self-energy (2.8) and
grouped the field part into the quantity L defined by

L=
/D¢ exp {—/dzr Bwqﬂ2 + %ez(Aqﬁ)z +n (—eim¢ +1 +ix/2n1"¢)i| }

/ D¢exp{— / d*r [%IV¢|2+%62(A¢)2}}

For the pure Coulomb interaction (¢ =0), the field representation of
the free energy similar to the one described by Egs. (2.22) and (2.23) was
established directly in the canonical format by Brilliantov.? The problem

(2.23)
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of the divergent self-energy was incorrectly ignored there, although this
quantity enters into the final formulae. In what follows, we aim at deriv-
ing the small-I" expansion of InL in (2.22) in order to show that, in the
limit € — 0, the divergent self-energy term o Ine? is canceled and the
Debye-Hiickel result (2.6) is reproduced correctly. For small I', we expand
the exponential

eV2rTe 1 4 iV2r ¢——(2nr)¢ (2.24)
L then becomes equal to

fD¢eXp{—fd2r [%|v¢|2+%€2(A¢)2+%K2¢2]}
[ Poexp |- [ arr 31962+ L2 ag]|

(2.25)

The Gaussian functional integrals can be diagonalized in the Fourier k-
space, with the result

k2424 12
L = L —
U K%+ k2 + €2k
d>k k% +e2k4
= —|A 2.26
eXp{ | '/(2n)2 <K2+k2~|—62k4 (2.26)

The integration over k can be carried out explicitly and one finds

A 1
lnL=|8 | <t+lnt++t Inz_ + 5 Ine ) (2.27)
v g

where

1+vV1—4e22

5 (2.28)

t+=
In the € — 0 limit,

1
t+:6—2—K2+0(62), I_=k>4 0(?) (2.29)
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Consequently,
NT
lnL’\'T<ln€2+an2—l) as €— 0 (2.30)

Inserting this into (2.22), the singular Ine? term disappears and one recov-
ers the Debye-Hiickel result (2.6).

The two-body density can be obtained from the field representation
(2.16) of E[z] using formula (2.14). The uniform shift in the ¢-field, rela-
tion (2.18), then leads to

na(r, ') (eV2TTOm) V2T H )
n(mn(’) B (eim¢(r))(ei«/2n7r¢(r’)>

(2.31)

where the averages (---) are taken with the field action
1 1 ‘
S[¢]= /dzr [§|v¢|2+ 562(A¢)2+n (—eWMM | +i«/2n1"¢))i| (2.32)

Note that because the self-energy does not enter explicitly into (2.31),
one can put e =0 in the action (2.32) (the consequent singularities in
the numerator and the denominator must be precisely canceled with one
another), and consider

Slp]= fdzr B|V¢>l2+n (—eim¢+l+i«/2nr‘¢):| (2.33)

In the Debye-Hiickel I' — 0 limit, the expansion of the exponential
according to Eq. (2.24) transforms the action (2.33) to

SpH = /d2r B|V¢|2 + %quﬁz} (2.34)

Since (¢) =0 with this action, the Wick’s theorem for Gaussian integrals
implies

(ei«/ZJTFqb(r)) — exp{—n[‘(¢>2(r))] (2.35)
@V _ oxp {_n[‘([(p(r) +¢(r/)]2)} (2.36)
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Consequently,

na(r,r’)

3 = exp{-27T (9 (4 (1)) (2.37)

For the quadratic action (2.34), the correlator (¢ (r)¢ (r')) is equal to the
inverse matrix element of the operator —V2+«2,

1
(¢(r)¢(r/)>=2—Ko(K|r—r/|) (2.38)
T
Thence

/
nz(;‘él' ) =e TKowIr=rD 1 _ P K(k|r —1']) (2.39)

in agreement with the standard Debye-Hiickel calculation (see, e.g., refs. 16
and 29).

2.3. Classical Non-Integrability

The field action of the 2D OCP (2.33) belongs to a more general class of
actions possessing the local form

1 1
Sk¢1= / d’r [§<8x¢>2+5<ay¢)2+4v<¢)} (240)

where the factor 4 in the potential term appears for notation convenience.
The exact solvability of a theory depends on the particular form of the
potential V, which is in our case

V@)= (=¥ 1 14iv2Ty ) (2.41)

n
4
It is well known®> that the 2D Euclidean field theory (2.40), defined in
the space of points r=(x, y), is the imaginary-time (y=it) continuation
of the equivalent real-time 1+1 dimensional quantum field theory with the
action

S[g]= / S / " dx [%(3@)2 - %(am)z —4V(¢>} (2.42)
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This action is dominated by fields satisfying the “classical” equation of
motion §S=0. In terms of light-cone coordinates defined by
d+ = (9; £ 9,)/2, the equation of motion reads

drd-¢p=—V'(¢) (2.43)

In the case of our potential (2.41), rescaling appropriately the ¢-field, this
equation is nothing but the 1+ 1 analogue of the usual mean-field Pois-
son-Boltzmann equation for the OCP. In general, the integrability of a
field theory is associated with existence of an infinite sequence of con-
served quantities (integrals of motion or “charges”). In what follows, we
use a general scheme® to find out whether or not there exists an infinite
sequence of conserved quantities for our field theory with the potential V
given by (2.41), in the classical limit, i.e., when the field ¢ is governed by
the equation of motion (2.43). The scheme represents a unique way of de-
terminig integrability properties of the given field theory.

Existence of a conserved charge is associated with the appearance of
a pair of “conjugate” local field densities (7, 0), with zero boundary con-
ditions at x — 400, such that

0-T =040 (2.44)

In terms of x and ¢ variables this is equivalent to 9,(T —0)=0,(T +0).
The integration over x results in

%[/m dx(T—@)} =(T+6)|*_ =0 (2.45)

and thence the charge [dx(T —6) is conserved. We look for (T,6) as
polynomial functions in derivatives 94 ¢, Bi¢, etc. The notation Ty (6) will
be used for T (0) with just s d;-derivatives. Because of the specific form
of the equation of motion (2.43), only 7,4; and 6;_; can create the con-
jugate couple, 0_T;.1 =04+65_1. The conserved charge is then

Qs:/dx(TH]—es,l) s=1,2,... (2.46)

Note that the total 4 derivatives can be dropped from T because the con-
sequent difference 9y —d_ =3, produces vanishing boundary contributions
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to the conserved charge. Similarly, let T,_; and 0~S+1 be~the conjggate poly-
nomials of given orders in d_-derivatives such that d_T,_; =09;6,41. Then,
the charge

Qszfdx(és_,_l—fs_l) s=1,2,... (2.47)

is conserved. As before, the total d_ derivatives can be dropped from 6.
At s=1, writing 7> = (d4+¢)* one has

0-Tr=2(319)(313-¢) = —2(3+)V'(¢) =0+ [-2V (9)] (2.48)
so that 6p= —2V and
0= / dx [(a+¢)2 +2v] (2.49)
Analogously, 6, = (3_¢)2, Ty= —2V and

0= /dx [(a_¢)2 +2v] (2.50)

01+ 0; and Q0 — Q; are energy and momentum, respectively, and these
two quantities are always conserved for any potential V. There is no solu-
tion for conjugate polynomials producing conserved charges at s being an
even integer. For s =3, there exist conjugate polynomials

Ty

b 2
(§> (+¢)" + (339) 2.51)

0y = — (046> V" (9) (2.52)

and the corresponding (64, T>), provided that the potential satisfies the
differential equation V””=5%V’. This equation is fulfilled either for the
trivial free field theory (b=0) or for the potential

V(p)=Ae"® +Be™"®  b£0 (2.53)
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When the constants A and B are nonzero and equal to one another, one
recognizes the sinh-Gordon (b real) or sine-Gordon (b imaginary) mod-
els. At s =35, there exist conjugate polynomials and the corresponding con-
served charges if the potential is either of the previous form (2.53) or of
the form

V(g)=Ae"? + Be= /D¢ p=£0 (2.54)

This integrable field theory is known as the Bullough-Dodd model ©®
and for imaginary b it corresponds to the 1:2 charge-asymmetric Cou-
lomb gas.®? The models with potentials (2.53) and (2.54) are the only
two one-component-field members of the integrable affine Toda field theo-
ries, based on the Dynkin-diagram classification of simple Lie groups. Pro-
gramming the whole scheme in the symbolic language Reduce, we were
able to proceed up to the relatively high s=15 order. Except for the
repeated appearance of the two potentials (2.53) and (2.54), we did not
find any other solution for the potential leading to conserved charges. We
do not anticipate a sudden appearance of an additional potential produc-
ing conserved charges for s > 15. If it is so the 2D OCP, characterized by
the field potential (2.41), is not classically integrable.

The conjectured classical non-integrability does not exclude the com-
plete “quantum” (all realizations of the ¢-field are considered) integrabil-
ity of the model. At specific values of the coupling constant I', quantum
fluctuations of the field around its classical saddle-point value can make
the plasma integrable, as it is at the free-fermion point ' =2.

3. LINEAR FERMIONIC REPRESENTATION

We now consider the 2D OCP, confined to a domain A, directly in
the canonical ensemble. N point-like g-charges are embedded in a spa-
tially homogeneous background of charge density pp = —gnp. If the sys-
tem-neutrality condition is imposed it holds n, = N/|A|. The background
produces the one-body electric potential vy (r)=py [ A d*r'v(Jr —r'|) which
satisfies the Poisson equation

Avp(r)=2mqnp, TEA 3.1
Since, written in the complex (z, 7)-coordinates,

A =49.9: (3.2)
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for a circularly symmetric background one has

wgnyp

Veire = const + 2z (3.3)
The deformation of the circular boundary dA or the presence of some
charge densities outside of A generates an additional gauge potential
Vgauge Such that Avgauge(z,2) =0 for z e A. With regard to (3.2), the gen-
eral solution of this equation reads

o
Vgauge (2, 2) = Ao + Z (ASZS + Bszs) (3.4)

s=1

Since Coulomb potentials are real, physical situations correspond to the
choice A;=B, for all s. The particular case of a quadrupolar poten-
tial vgaugezA(z2 +72) results from the deformation of the disk into an
ellipse.(11-38)

The potential energy of N particles at positions {z; € A} plus the
background is

E=Eo+q) v Z)—q" Y |z —zjl (3.5)

i i<j

The background-background interaction constant Ey does not influence
the particle densities and so it can be omitted. The partition function at
inverse temperature B reads

N
ZN:NL!/A H [dsz“’(Zf’Zf)]H|Zi—Zjlr (3.6)

i=1 i<j

where I' = g2 and the one-body Boltzmann factor w(z, z) = exp[—Bqvs(z,
z)]. The multi-particle densities can be obtained in the standard way [see
relations (2.13) and (2.14)]:

_ 1 6Zy
3) = w(g B — N 3.7
n(z,z) = w(z,2) Zn 30 D) 3.7
_ _ . o1 82z
na(z1, 21122, 22) = w(zi, 2)w(z2,22) = il (3.9)

ZN dw(z1,21)0w(z2,22)

etc. We will study the special case of the plasma with a “soft wall” (3%
when particles are confined by the background itself. In particular, for a
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fixed value of the particle number N one makes the radius of the homo-
geneous circular background infinite, | A| — co. The particles will gather in
a circular region of area N/np. In the limit N — oo, the soft-wall edge of
this region will have the structure different from the one of the usual hard-
wall problem, but the particle densities deep in the interior (|z| finite) will
not be touched by the soft wall and will attain the bulk values. Also the
free energy will be modified only by a surface term. Within the soft-wall
|A| — oo formulation of the problem, we will consider two cases:

(1) the circularly symmetric homogeneous background, Eq. (3.3), with

1 r
w(z,Z)z;exp (—Ennbzi) (3.9

(i1) the general homogeneous background with the gauge component
(3.4), given by

r o=, s g
w(z,7) = exp |:—§rmbz2 - Xz(aszA +bszA):| (3.10)

s=1

where a;=pBqgA; and b;=pBgBs;. As was already mentioned above, real
physical situations require a; = b; for all s and the values of gauge param-
eters must be such that the multiple integral determining the partition
function (3.6) does not diverge.

For the coupling I' =2y (y an integer), it has been shown in ref. 24
that the partition function (3.6) can be expressed as the integral over
two sets of Grassmann variables {gi("‘),lpl.(‘”} each with y components
(x=1,...,y), defined on a discrete chain of N sites i=0,1,... , N —1
and satisfying the ordinary anticommuting algebra®?, as follows:

Zn(y) = /prg eSEW (3.11)
y(N-1

SEY) = Y BiwyV; (3.12)
i,j=0

Here, DyD& = H;V;(} dl//[(y). . .dl/fi(l)d%'i()/). . .dé,.(l) and § involves pair inter-
actions of “composite” operators

N-1 N-1
_ 1) () 1) )
b= Z %-il '-'éiy , \.Isz Z lﬁjl "’1//]'1/ (313)
i]aeiy =0 J1sesdy =0

(i) ++iy =i) U+l =)



Is the Two-Dimensional One-Component Plasma Exactly Solvable? 147

i.e.,, the products of all ¥ anticommuting-field components, belonging to
either &- or -set, with the fixed sum of site indices. The interaction
strength is given by

w,-jzfcﬂz w(z,2)7'7/; i,j=0,1,....y(N=1) (3.14)
A

Using the notation (---)= waDSeSu-/ZN(y) for an averaging over
the anticommuting variables, the particle density (3.7) and the two-body
density (3.8) are expressible in the fermionic format as follows

y(N-1)
nz.2) = wk Yy (&7 (3.15)
i,j=0
n2(z1, 21122, 22) = w(z1, 2D w(z2,22)
y(N=1) o
X Z (B V)i Eiy ‘I'jz>zlllz{lzlzzz£2 (3.16)
i1,j1,i2,j2=0

respectively.
The exact solvability of the 2D OCP at I'=2 (y=1) is due to the
bilinear form of = ZZ/EAL—OI) &w;;¥;. Thus,

Zy(y =1 =Det(wi)[}; L, (3.17)

The two-correlators determining the particle density (3.15) are equal to the
inverse elements of the N x N w-matrix (3.14),

&y =wj; (3.18)
The Wick’s theorem applied to the four-correlators in (3.16) implies

<€i1wj1$i2wj2> = (Ei”ﬂj])(éizlpjz)_<%‘i11//j2><%‘i21[fj1>
=wlwl —wilw! (3.19)

J1i1r ™ jaiz J2i1 7 iz

In the case of a circularly symmetric plasma with w(r)=w(r) and
A ={r <R} [like the one of interest, defined by Eq. (3.9) and R — o¢], the
interaction matrix w with elements (3.14) becomes diagonal:

R .
Wij = wié,-j, wi =2r / drw(r)r2'+l (320)
0
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The “diagonalized” form of the partition function

y(N-1

Zv)= [ DuDE ] exp(Eiuw) (3.21)
i=0
implies that only correlators (E;,¥; E;, W), ---) with i1 +ir+--- =j1+ j2+

- will be nonzero. The dependence of Zy(y) on the set of moments
{w,-}g’g;l) is the crucial problem whose solution would mean the complete
exact solution (free energy, correlation functions) of the bulk 2D OCP at
the given coupling I'=2y. Let us write down explicitly few examples of
this dependence. At y =1, we have the simple result

Zy(1) =wowy - wy_1 (3.22)

At y =2, using the anticommuting integral rules one finds from (3.21) for
small particle numbers N =2, 3 that

Z2(2) = wowy +2w? (3.23)
Z3(2) = w0w2w4+2wow%+2w%w4 +4w1w2w3+6w% (3.24)

etc. At y =3 one has

Z>(3) = wows + 3wiws (3.25)
Z3(3) = w0w3w6+32w0w4w5+32w1w2w6
+6%w wiws + 152 wyw3ws (3.26)

etc. There exists one model exactly solvable for every y and N, namely
the 2D OCP constrained to a circle. In that case w(r)=5§( —1)/(27) and,
consequently, w; =1 for all i =0, 1, ...,y (N —1). It was proved in various
waysD that

(yN)!

Zn(y)= DV N

when all w; =1 (3.27)

Relations (3.22)-(3.26) pass this test.

We now aim at analyzing the structure of a general summand in
Zn(y). It follows directly from the fermionic representation (3.21) that
each term is composed of just N w’s, w; w;, ---wjy. The transformation
gl.(‘” N Aiéi(“) for all «=0,1,...,y indices and sites i=0,1,... , N —1
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implies € — A’E. As a consequence, the subscripts of the general term
Wi, Wi, - - - w;, must satisfy the relation ) i=yO0+1+---+ N —-1) =
yN(N —1)/2. It is necessary to distinguish between y being an odd or
even integer.

For y an odd integer, the composite & and W operators are products
of an odd number of anticommuting variables and so they themselves sat-
isfy the usual anticommutation rules

(8, Bj}={¥;,V;}={E;,¥;}=0 (3.28)

)
I
=

)
I
e
—
=
o

for all i,j=0,1,...,y(N —1). In particular it holds E:
expansion of each exponential in (3.21) is thus

exp(EBjw; V) =14 E;w; \¥; (3.29)

and the partition function is represented as follows

vy = Y Chipeaywnwn w330
i|<ip<..<iy=0
[Si=yNWN-1)/2]

Cilvin--wiN = /Dé: L‘l] L4l2 "EIN (331)

We see that for odd y a given w; can occur in a summand at most once.
When y is an even integer, the composite E and W operators are
products of an even number of anticommuting variables and so they com-

mute with each other
[Ei, Ej]=[¥;, ¥,]=[E;, ¥;]=0 (3.32)

for all i, j=0,1,...,y(N —1). The expansion of an exponential is now a
bit more complicated,

Z[Z‘/”“ L @iwiwl  fori=0,... . F(N-1)
eZiwiVi — (3.33)
Z?ZBHZ’/” L @iwi W) for i=45(N-1),...,y(N=1)

Next terms vanish because they contain second or higher power of at
least one anticommuting & or i variable. Let us introduce the indices



150 Samaj

N—1
o}/ 7Y

with the following value ranges:

0.1, [2]+1  fori=0,.. . 5-1)
o= (3.34)
0,1,... ,2N—1—[%] for i=X(N—1),...,y(N—1)

The partition function for y an even integer is then expressible as

w2 ! w“y(N—l)
2 0 1 FyiN=1
Zn(y)= > c? (3.35)
051550y (N—1) | . |
o). oy (N1 Olo.a]. dy(N-1):
[za, sza,— VN(N 1)]

where
~ ~ C(
Capar,....ayy-1) = f Dt EQ"EY' - E y_)) (3.36)

The underlying fermionic representations, relations (3.30), (3.31) for
y odd and relations (3.34)-(3.36) for y even, contain the unknown coeffi-
cients which can be formally written in both cases as

- - .Y
=/Dg 81, Ei, - iy, Zz:EN(N—l) (3.37)

The “basic sector” of indices is

i1<ip<...<iy, for y odd (3.38)
i1<ib<...<iy, for y even )
The C-coefficient with an arbitrary sequence of indices can be expressed
in terms of the basic one with indices ordered according to (3.38) through
a successive exchange of nearest-neighbor couples of composite operators,

C.

ll,...,ij,ij+1,...,iN=(_1)yci1,... (339)

,ij+1,ij,...,iN
It is evident that
Coy,...yin—1n=1 (3.40)

One can evaluate the C-coefficients directly from their definition
(3.37) by using the rules of integration over anticommuting variables.
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However, there exists another simpler way how to determine these coeffi-
cients. Let P,_i(k, k") be a general polynomial of the (y —1) order in the
k, k' variables, and consider this polynomial in the following combination
with the composite operators

y(N—D)
> Pk K)EEr:  K=0,1,....2y(N-1) (3.41)

kK =0
(k+k' =K)

Representing the E-operators in terms of the anticommuting &-variables
[see relation (3.13)], Eq. (3.41) can be rewritten as

N-1
> Pyitkit+ky K

(D ) (D) )
+-- +k;’)§k1 ce fk: Ek/l ce ";:kz// 8K,k1+~-ky+ki+---k’y (3'42)

Since P),_1 is the polynomial of the (y —1) order in its arguments, at least
one couple of the k, k’ factors with the same subscript, say the couple k;
and k| associated with & M, does not occur in the given term of the expan-
sion of P, _j(k —i—~-k},,ki+~~~k;). Thus, since

N-—1
(D)D)
D G B Sk bk
ki K, =0

DD DM
= 2 (608 +660 ) Skt by =0 B4D
k1<ki

the polynomial combination with composite operators (3.41) vanish. Pass-
ing from P,_y(k, k') to Q,_1(k+k',k—k’) one has

y(N=1)
Z k—kK)'EBxEp=0  forn=0,1,...,y—1 (3.44)

k& =0
(k+k =K)

We remind that the E-operators anticommute for y odd and commute
for y even. This is why for ¥ odd only odd powers of (k —k’) provide
a nontrivial information and for y even only even powers of (k —k’) are
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informative. In view of the representation (3.37), we finally arrive at a
homogeneous set of linear equations for the coefficients C:
if y is odd,

y(N=1)
D k=KY'Cipiy ik =0;  n=13,....y=2 (3.4

kK =0
(k+k' =K)

if y is even,

y(N-1
Y k—K)'Cipiyauk=0;  n=0.2,....y=2  (3.46)

k&' =0
(k+k =K)

In both cases K runs over 0,1,...,2y (N —1).

In the first nontrivial case of y =2, according to Eq. (3.39) the inter-
change of subscripts does not change the sign of the C-coefficients. The
normalization is Cp 2, . 2nv-1)=1. Formula (3.46) with n=0 applies. For
N =2, the normalization Cp»=1 is supplemented by the only equation

0=Co2+C11+Crp (3.47)

so that C; 1= —2. Inserting the two coefficients into the representation
(3.35) one recovers the exact relation (3.23). For N =3, the normalization
Co.2.4=1 is supplemented by the (overcomplete) set of five equations

0 =Co24+Co33+Coa2

0=7Cr14+Cr23+C132+Cra

0 =Cr04+C213+Ca22+C231+Ca4p (3.48)
0=0C303+C3121C3211C330

0 = C402+Cs1.1+Cs20

which implies Cp33=Cj14= —2, Ci23=2 and Cy5,= — 6. Inserting
these coefficients into (3.35) one recovers the relation (3.24). We sug-
gest that the sets of linear equations, (3.45) for y odd and (3.46) for y
even, constitute, together with the relation (3.39) and the normalization
(3.40), complete (more precisely, overcomplete) sets to be solved for the
C-coefficients. We have checked this conjecture for y =2 (I'=4) up to
N =12 particles and for y =3 (I'=6) up to N =9 particles.
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In comparison with the technique of anticommuting variables, the
algorithms for solving a set of linear equations are much faster. The pre-
sented scheme is therefore very convenient for exact computer calculations
of the plasma with a finite number of particles. From the methods dealing
with the finite number N of particles,?%23 the closest one®® also pro-
vides the representations of the partition function (3.30) for y odd and
(3.35) for y even. The C-coefficients are expressed there as multiple inte-
grals over the unit circle, and consequently as multiple summations over
all possible permutations of N indices. Such algorithm is inferior to the
present approach.

At this stage, we were not able to find a simplification of the under-
lying sets of linear equations in the thermodynamic limit. In spite of this
the fact that the crucial C-coefficients are determined by linear equations
may indicate the exact solvability of the 2D OCP at I' = 2xinteger.

4. GAUGE INVARIANCE

In the case of classical statistical systems with short-ranged interac-
tions among constituents, the thermodynamic limit of an intensive quan-
tity does not depend in general on the shape of the system and on the
conditions at the boundary given by the surrounding medium. This may
be no longer true for macroscopic systems with long-ranged interactions.
A typical example is the shape-dependence of the dielectric susceptibil-
ity tensor for Coulomb conductors®? caused by the long-range decay of
charge correlations along the boundary.*>*) Gauge invariance of Cou-
lomb fluids is another, in a certain sense opposite, phenomenon related
to the long-range nature of particle interactions. Let us consider a mac-
roscopic Coulomb conductor in an arbitrary shaped domain A, with per-
haps some charge distribution on the boundary dA. The effect of the
boundary is then reflected in the bulk through a long-ranged one-body
potential whose Laplacian is zero inside the domain A. The assumption
of gauge invariance states that this one-body “gauge” potential is per-
fectly screened by the Coulomb system at macroscopic distances from the
boundary, and so it does not affect the averaged particle distributions in
the bulk interior.

The above developed fermionic formalism will be now used to prove
gauge invariance of macroscopic Coulomb fluids at the special value of the
coupling I"=2. The original proof of gauge invariance (up to the gauge
potential being the polynomial of degree 2 in spatial x and y components)
at I'=2 was presented in ref. 27 for a class of possibly inhomogeneous
backgrounds. The present proof is an alternative one, applicable also to
non-physical situations with a complex gauge potential.
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At I'=2 and in the units of wn, =1, the one-body Boltzmann factor
of the circularly symmetric background (3.9) defined in an infinite space
reads

1 -
wiz,)=—e%,  A=R? 4.1)
T
The N x N matrix (3.14) becomes diagonal, w;; =w;§;;, with elements
00 ) ..
w,-=2/ dre" 2l =1 i=0,1,..., N—1 4.2)
0

Combining Eqs. (3.15) and (3.18), the latter written as (£;1/;) =4;;/w;, the
particle density at distance r from the center is given by

n(r) N 2
Z —' 4.3)

In the limit N — oo and for finite r, the bulk particle density is constant,
n(r)=np, as was expected.

Let us now consider the general case of a homogeneous background
characterized by the one-body Boltzmann factor (3.10) with gauge degrees
of freedom,

w(z,2)= % exp |:—zZ - Z(aszs + szS):| (4.4)

s=1

The interaction (3.14) is non-diagonal,

d*z .. ) )
wij = / lezj exp [—zz — Z(asz‘ +bszs)i| 4.5)
S

i,j=0,1,..., N — 1. The strength of gauge parameters {a,, bs} must be
such that integrals in (4.5) converge. For a real gauge potential with
a; =bs =ae'?, writing z=rel? we have a,z* +b,7° =2ar® cos(p+s¢). If s>
3, for a fixed ¢ there always exist the ¢-angles such that
acos(¢ +s¢) <0, which implies divergent » — oo contributions to the inte-
gral in (4.5). Thence all gauge coefficients {ay, b} with s >3 must be equal
to zero in physically acceptable situations. For s=2, the convergence is
ensured provided that 2a < 1.
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In view of Egs. (3.15) and (3.18), the particle density at point (z,z) is
given by

n(z,z) i, o
= =nw(z,2) Z u)j_l.lz'Zj (4.6)

np

i,j=0

In the thermodynamic limit N — oo, the bulk particle density is expected
to be constant, n(z,z) =np. This is true iff

Z w/t Zj = eXp |:ZZ + Z(%ZS +bszy):| (47)

l]_

This equation can be understood as the generating relation, with z and z
assumed as independent variables, for the inverse elements of the infinite
w-matrix with elements (4.5).

To prove that the quantities wjj.l determined by Eq. (4.7) form indeed
the inverse matrix of the one with elements (4.5) we have to show that it
holds

0 o0
Z lkwkj =0ij, Z wi7c1 wij =0ij 4.8)
k=0 k=0
for all i, j=0,1,.... Let us consider the auxiliary function
o0
Ki()y= Y wigwg't/ (4.9)
k=0

Presuming the validity of the generating Eq. (4.7), a series of straightfor-
ward transformations yields

K;(1)

Z /—Z’z w(Z,Z)wk_jllj

Jj.k=0

Z i - = _ S _ 48
/72 exp|: Z+H1Z— ) a(z t):| (4.10)

s

= [&( +0)iexp|—zz—1 —Za [+ —1*]
= G py—2Z—1z S s |z
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Since (z41)* =15 =z°+s5tz5" 4. +51°" 1z, only terms ¢/ and —zZ survive
from (z+1¢)" and the exponential, respectively. Consequently,

Ki(t)=t'  forall i=0,1,... 4.11)

With regard to the definition (4.9) of K;(¢), this equation implies the
first relation in Eq. (4.8). The second relation can be obtained in a sim-
ilar way by showing that L;({)= )", _ w wyt/ is equal to 7 for all
i=0,1,.... The proof is accomplished.

One can readily show that the proof of gauge invariance for the one-
body density automatically ensures gauge invariance for the two-body den-
sity (3.16) with correlators (3.19).

Strictly speaking, gauge invariance has meaning only for real gauge
potentials; the short discussion after formula (4.5) tells us that only gauge
potential being polynomial of degree 2 in z and Z complex coordinates is
allowed in physical situations. On the other hand, the proof of the matrix
inversion (4.8)—(4.11) requires only the finite values of matrix elements
(4.5), without putting any further restriction on the {ay, by} gauge parame-
ters which may therefore be unphysical. Typical unphysical examples lead-
ing to finite values of matrix elements are by =0 or a; =b,; =1. It is inter-
esting from a mathematical point of view that there exists a large family
of infinite matrices, with elements w;; (i, j =0, 1,...) defined by Eq. (4.5),
which are explicitly invertible by using the closed-form generating formula
(4.7). A detailed analysis of this mathematical peculiarity goes beyond the
scope of the present paper.

5. CONCLUSION

In the canonical ensemble, the 2D jellium is equivalent to the 2D Euclid-
ean-field theory with the action (2.33). Here, the divergent Coulomb self-
energy does not renormalize the model’s parameters like it is in the
sine-Gordon representation of the 2D Coulomb gas. In contrast to the
sine-Gordon model, the quantum analogue of the present Euclidean the-
ory is conjectured to be not integrable on the classical level (only such
realizations of the ¢-field are considered which minimalize the action) due
to the lack of an infinite sequence of integrals of motion. The classical
non-integrability does not exclude the complete quantum (all realizations
of the ¢-field are considered) integrability at specific discrete values of
I, like it is at the free-fermion I'=2 point. This free-fermion coupling
belongs to a family of couplings I'=2y (y integer) which admit a 1D
fermionic representation of the partition function. The fermionic represen-
tations, relations (3.30) and (3.31) for ¥ odd and relations (3.34)-(3.36) for



Is the Two-Dimensional One-Component Plasma Exactly Solvable? 157

y even, contain the unknown C-coefficients. These coefficients are deter-
mined by the homogeneous sets of linear equations, (3.45) for y odd and
(3.46) for y even, supplemented by the exchange formula (3.39) and the
normalization (3.40). This feature is a sign of integrability. The present
analysis might be a challenge for specialists in the Field Theory.

The proof of gauge invariance of the 2D OCP at I' =2 is related to
the exact inversion of a class of infinite-dimensional matrices which ele-
ments are determined by non-Gaussian integrals (4.5). This is interesting
from a mathematical point of view.
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